

Long-Term Energy Optimization Opportunities of California Water Systems LGC – Statewide Energy Efficiency Forum June 16, 2016

Presented by: Cody Coeckelenbergh

Introduction

Established in 2003

Offices:

- Tempe, AZ
- Monrovia, CA
- San Diego, CA
- Emeryville, CA

LINCUS

- We work with Electric Utilities to offer technical assistance and incentive programs to their Customers
- We provide comparative energy analyses and energy engineering
- We provide objective third-party technical reviews
- We offer full coordination with utility representatives throughout the incentive process

Agenda

The Water-Energy Nexus

Lincus Water Infrastructure System Efficiency (WISE) Program

Market Potential

Prioritizing Water Segment Opportunities

Why Leverage WISE?

Water – Energy Nexus

- Water required to produce energy
- Energy required to distribute the water to public
- Energy required to treat the waste water

"Energy demands on Water Resources" U.S. DOE Report to Congress on the interdependency of energy and water

Water Conservation Energy Conservation

Water-Energy Nexus

Water for Energy

- Exploration
- Extraction
- Hydraulic Fracturing
- Refining/Purification
- Steam
- Cooling

Energy for Water

- Heating
- Pumping
- Pressurizing
- Purification
- Aeration

6

Energy Impact of Water

- In 2005, the CEC found that water-related energy consumption and demand accounted for 19% of the state's electricity requirements¹. The 19% includes both:
 - Item #1: Energy Use by the Water Sector the amount, timing, and location of energy needed to support water sector operations.
 - Item #2: Energy Use by Water Customers the amount of energy used by water customers during the consumption of water, whether for pumping, heating or other purposes.

CA Natural Gas Needs

CA Electricity Needs

Energy Impact of Water

 In 2010, the CPUC Embedded Energy in Water studies² determined that the <u>Energy Use needed to support water sector operations was 7.7%</u>

Table ES-2. Statewide Water Sector Electric Use (GWH)

	CPUC/GEI/Navigant	
Segment of the Water Use Cycle	Study 1	Study 2
Supply	15 786	172
Conveyance	10,700	172
Water Treatment		312
Water Distribution		1,000
Wastewater Treatment		2,012
Total Water Sector Electricity Use	19,282	
% of Total Statewide Electric Requirements	7.7%	

Note: Excludes estimates of electricity consumption for water end uses.

Water Impacts

- 195 billion gal/day of fresh and saline water withdrawn for thermoelectric cooling
- 48% of total withdrawals (including saline)
- 39% of freshwater withdrawals (same as irrigation)

Public Supply, 11 percent

Aquaculture, less than 1 percent

Mining, less than 1 percent

dumene pegnatite mine, Kings Mountain, North Caroli

Domestic, less than 1 percent

Domestic well, Early County, Georgia

Livestock, less than 1 percent

Industrial, 5 percent

Thermoelectric Power, 48 percent

Figure 1. Total water withdrawals by category, 2000.

Water Infrastructure System Efficiency (WISE) Program

Summary

- Lincus' Water Infrastructure System Efficiency (WISE[™]) Program currently targets the major water-energy users in SCE's, PG&E's and SDG&E's service territory, namely Water Agencies, Special Districts, and city owned water systems.
- WISE focuses on the the major electric consumers of this segment.

Water Infrastructure System Efficiency (WISE) Program

• Source Water Pumping and Water Distribution Systems (WSO)

- Lincus uses a holistic approach, combining existing pump tests and hydraulic modeling to evaluate how a Water Agency's pumping system can be optimized.
- Water (WTP) and Wastewater (WWTP) Treatment Plants
 - In Wastewater Treatment Plants, WISE focuses on aeration systems and controls to minimize the facilities' electrical consumption
 - In Water Treatment Plants, we use a similar approach to WSO to optimize a plant's operations, focusing primarily on the pumps.

Market Potential

Looking at the 5 largest utility electric producers, this amounts to over <u>1.7</u>
 <u>billion kWh in energy savings potential</u> at a conservative estimate of a 10% energy reduction.

		7.7%	10%
	Total Energy Use ³ kWh	Sector Electric Use	Energy Savings
SCE	82,849,000,000	6,379,373,000	637,937,300
PG&E	82,840,000,000	6,378,680,000	637,868,000
LADWP	27,628,000,000	2,127,356,000	212,735,600
SDG&E	17,670,000,000	1,360,590,000	136,059,000
SMUD	10,319,000,000	794,563,000	79,456,300
Total Energy S	1,704,056,200		

 From Lincus' current pipeline of projects the kWh/kW ratio is about 8,600. therefore this equates to <u>198 MW of coincidental peak reduction</u>.

Market Potential: Pumps

Energy Efficiency of Pumps –

			Excellent %			
Motor HP	Low %	Fair %	Good %	Well Pump	Booster	Submersible
3 – 5	≤ 41.9	42.0 - 49.9	50 - 54.9	≥ 55.0	≥ 55.0	≥ 52.0
7.5 – 10	≤ 44.9	45.0 - 52.9	53 - 57.9	≥ 58.0	≥ 60.0	≥ 55.0
15 – 30	≤ 47.9	48.0 - 55.9	56 - 60.9	≥ 61.0	≥ 65.0	≥ 58.0
40 - 60	≤ 52.9	53.0 - 59.9	60 - 64.9	≥ 65.0	≥ 70.0	≥ 62.0
75 – up	≤ 55.9	56.0 - 62.9	63 - 68.9	≥ 69.0	≥ 72.0	≥ 66.0

Research indicates that the OPE averages of pumping plants in California range between 53-57.5% for well pumps and 52-55% for non-well pumps.

Market Potential: Sample Customer

Although pump efficiency improvements are cost effective, operators will typically not work on a pump until efficiencies drop below 40%.

Pump Name	Test Eff. %	Impr. Eff. %	Estimated Savings (kWh/yr)	Estimated Peak kW Savings	Simple Payback Period (yrs)
Pump A	52.8	67.0	115,829	10.4	1.2
Pump B	45.1	67.0	77,697	10.3	2.2
Pump C	57.6	67.0	77,877	6.5	2.2
Pump D	52.2	69.0	106,801	18.0	2.4
Pump E	56.4	67.0	70,965	7.8	2.5
Pump F	49.7	66.0	48,269	9.0	2.8
Pump G	43.1	66.0	34,565	8.0	3.2
Pump H	58.0	70.0	47,793	9.5	4.1

Market Potential: Distribution Systems

Energy Efficiency of Distribution Systems –

	Ener (k	gy Intensity Wh/MG)
Water-Use Cycle Segments	Low	High
Water Supply & Conveyance	0	14,000
Water Treatment	100	16,000
Water Distribution	700	1,200
Water Collection	1,100	4,600
Wastewater Discharge	0	400
Recycled Water Treatment &	400	1 300
Distribution	400	1,200

Optimized Energy Intensity metrics will vary widely between various water systems and must be developed at a system level.

Market Potential: Sample Customer

	Project Total	EEM1	EEM2	EEM3
		Sys. Opt. of	Sys. Opt. of	Pump Efficiency
		Well Pumps	Booster Pumps	Improvement
kWh/yr Savings	4,434,322	3,049,878	787,022	597,422
kW Savings	575.2	436.3	56.2	82.6
Measure Cost	1,755,050	\$1,312,575	\$153,725	\$288,750
Utility Savings	620,211	\$431,499	\$106,159	\$82,554
PG&E Incentive	464,921	\$309 <i>,</i> 442	\$71,394	\$84,085
Net Cost	1,290,129	\$1,003,133	\$82,331	\$204,665
Simple Payback	2.1	2.3	0.8	2.5

Prioritizing Water Segment Opportunities

codyc@lincusenergy.com

Why leverage WISE?

- Lincus has thorough understanding of PG&E, SCE, & SDG&Equalified measures and will evaluate cost-effective EE opportunities
- Lincus manages the utility incentive process directly
- Lincus will develop energy savings calculations as part of the program
- Lincus will maximize utility incentives and associated energy savings
- Lincus can process applications for On-Bill Financing (OBF) 0% loans
- If you are an eligible IOU Customer, the PROGRAM SERVICES ARE AT NO COST TO YOU!

Cody Coeckelenbergh

codyc@lincusenergy.com

http://www.LincusEnergy.com

Sources

1. ftp://ftp.cpuc.ca.gov/gopher-

data/energy%20efficiency/Water%20Studies%202/Study%202%20-%20FINAL.pdf

- 2. <u>http://www.waterenergyinnovations.com/publication/view/cpuc-embedded-energy-in-water-studies-1-statewide-and-regional-water-energy-relationship/</u>
- 3. http://energyalmanac.ca.gov/electricity/overview.html
- 4. http://library.ucr.edu/wrca/grants/districts.html
- 5. http://www.casaweb.org/membership/agency-members/

